El tratamiento térmico es un proceso que modifica la estructura y el rendimiento de los materiales metálicos calentándolos, manteniéndolos calientes y enfriándolos. Su finalidad es mejorar la resistencia, dureza, tenacidad, resistencia al desgaste y otras propiedades mecánicas de los materiales metálicos, o mejorar el rendimiento de procesamiento de los materiales metálicos.
Alta maquinabilidad y ductilidad, buena relación resistencia-peso. Las aleaciones de aluminio tienen una buena relación resistencia-peso, alta conductividad térmica y eléctrica, baja densidad y resistencia natural a la corrosión.
Altamente resistente a la corrosión del agua de mar. Las propiedades mecánicas del material son inferiores a las de muchos otros metales mecanizables, lo que lo hace mejor para componentes de baja tensión producidos mediante mecanizado CNC.
El latón es mecánicamente más fuerte y las propiedades del metal de menor fricción hacen que el latón mecanizado por CNC sea ideal para aplicaciones mecánicas que también requieren resistencia a la corrosión, como las que se encuentran en la industria marina.
Pocos metales tienen la conductividad eléctrica que tiene el cobre cuando se trata de materiales de fresado CNC. La alta resistencia a la corrosión del material ayuda a prevenir la oxidación y sus características de conductividad térmica facilitan la conformación mediante mecanizado CNC.
El titanio es un material avanzado con excelentes características de resistencia a la corrosión, biocompatibilidad y relación peso. Esta gama única de propiedades lo convierte en una opción ideal para muchos de los desafíos de ingeniería que enfrentan las industrias médica, energética, de procesamiento químico y aeroespacial.
El hierro es un metal indispensable en el sector industrial. El hierro está aleado con una pequeña cantidad de acero al carbono, que no se desmagnetiza fácilmente después de la magnetización y es un excelente material magnético duro, así como un importante material industrial, y también se utiliza como principal materia prima para el magnetismo artificial.
Debido a la baja resistencia mecánica del magnesio puro, se utilizan principalmente aleaciones de magnesio. La aleación de magnesio tiene baja densidad pero alta resistencia y buena rigidez. Buena tenacidad y fuerte absorción de impactos. Baja capacidad calorífica, rápida velocidad de solidificación y buen rendimiento de fundición a presión.