Le traitement thermique est un procédé qui modifie la structure et les performances des matériaux métalliques en les chauffant, en les gardant au chaud et en les refroidissant. Son but est d'améliorer la résistance, la dureté, la ténacité, la résistance à l'usure et d'autres propriétés mécaniques des matériaux métalliques, ou d'améliorer les performances de traitement des matériaux métalliques.
Haute usinabilité et ductilité, bon rapport résistance/poids. Les alliages d'aluminium ont un bon rapport résistance/poids, une conductivité thermique et électrique élevée, une faible densité et une résistance naturelle à la corrosion.
Très résistant à la corrosion de l'eau de mer. Les propriétés mécaniques du matériau sont inférieures à celles de nombreux autres métaux usinables, ce qui le rend idéal pour les composants à faible contrainte produits par usinage CNC.
Le laiton est mécaniquement plus résistant et les propriétés métalliques à faible friction rendent le laiton usiné CNC idéal pour les applications mécaniques qui nécessitent également une résistance à la corrosion telles que celles rencontrées dans l'industrie maritime.
Peu de métaux ont la conductivité électrique du cuivre lorsqu'il s'agit de matériaux de fraisage CNC. La haute résistance à la corrosion du matériau aide à prévenir la rouille et ses caractéristiques de conductivité thermique facilitent la mise en forme par usinage CNC.
Le titane est un matériau avancé doté d’excellentes caractéristiques de résistance à la corrosion, de biocompatibilité et de résistance/poids. Cette gamme unique de propriétés en fait un choix idéal pour relever de nombreux défis d’ingénierie auxquels sont confrontés les secteurs médical, énergétique, chimique et aérospatial.
Le fer est un métal indispensable dans le secteur industriel. Le fer est allié à une petite quantité d'acier au carbone, qui n'est pas facilement démagnétisé après magnétisation et constitue un excellent matériau magnétique dur, ainsi qu'un matériau industriel important, et est également utilisé comme matière première principale pour le magnétisme artificiel.
En raison de la faible résistance mécanique du magnésium pur, les alliages de magnésium sont principalement utilisés. L'alliage de magnésium a une faible densité mais une résistance élevée et une bonne rigidité. Bonne ténacité et forte absorption des chocs. Faible capacité thermique, vitesse de solidification rapide et bonnes performances de moulage sous pression.